Перспективы централизации системы лабораторной диагностики в Украине

Александр ХЕЙЛОМСКИЙ,
Татьяна ХЕЙЛОМСКАЯ,
Дмитрий ШАХНИН

линическая лабораторная диагностика занимает важное место среди диагностических служб современной медицины. Сегодня лабораторная служба предоставляет около 70 - 80% объема объективной диагностической информации, необходимой для своевременного принятия правильных клинических решений. В последние годы наблюдается существенный прогресс в области медицинских технологий, в частности, связанных с проведением лабораторных исследований. Это создание высокопроизводительных анализаторов, расширение области применения новых высокотехнологичных методов диагностики (ВЭЖХ, ИФА, ПЦР и т.д.), замена трудоемких методов на более производительные и информативные автоматизированные системы диагностики и т.д. Этот процесс фактически предопределяет необходимость интеграции лабораторных исследований.

Техническое оснащение централизованных клинических лабораторий

Лабораторно-диагностической службе Украины предстоит пройти сложный путь преобразования в рамках реформы здравоохранения в целом.

Клинико-диагностические лабора-

мых анализов, недоукомплектованных необходимым оборудованием и кадрами, обусловливает экономическую неэффективность такой системы. Все это, наряду с проблемами охраны труда и отсутствием систем обеспечения качества исследований и непрерывного повышения квалификации персонала лабораторий, свидетельствует о необходимости оптимизации структуры и функций лабораторной службы.


Одним из путей ее реформи-

&...

Одним из путей реформирования лабораторной службы является централизация клинико-лабораторной диагностики, что соответствует мировым тенденциям

тории (КДЛ) в большинстве случаев не располагают средствами автоматизации, имеют минимум оборудования, чаще всего устаревшего, что не позволяет расширять диапазон исследований. В их структуре практически отсутствуют современные автоматизированные ИФА-анализаторы, приборы для клинического электрофореза, системы ДНК-диагностики, устройства для гематологических исследований и т.п. Наличие в составе лабораторной службы большого количества маломощных лабораторий с минимальным набором выполняе-

рования является централизация клинико-лабораторной диагностики, что соответствует мировым тенденциям. Это подразумевает концентрацию большого количества рутинных исследований в крупных КДЛ, оборудованных высокопроизводительными автоматическими анализаторами, что существенно снизит трудозатраты и общую стоимость каждого определения. Естественно, что при таком подходе одним из ключевых факторов успеха будет по возможности наиболее полная автоматизация всех операций в такой лаборатории.

& рис. 2: Общий вид системы EnGen

& рис. 1: Общий вид системы Modular Pre-Analytics производства фирмы Roche

Принцип этапности организации лабораторного исследования требует, чтобы такое исследование содержало преаналитическую, аналитическую и постаналитическую фазы. Преаналитический этап начинается с поступления образца в клиническую лабораторию, его регистрации в лабораторной информационной системе (ЛИС) и заканчивается поступлением пробы непосредственно на рабочее место для проведения исследования. Кроме того, в зависимости от типа образца и определяемого аналита (группы аналитов), на этом этапе выполняется пробоподготовка (чаще всего центрифугирование) и аликвотирование образца из первичной пробирки (в которой он поступил в лабораторию) в одну или несколько вторичных для непосредственного исследования. Собственно аналитический этап зависит главным образом от метода, используемого для исследования. Его проведение подробно описано в соответствующих инструкциях и других документах, предоставляемых производителями оборудования и тест-систем. По-

станалитическая фаза начинается непосредственно после получения результатов исследований, включает их регистрацию во внутрилабораторной системе хранения данных и заканчивается доставкой результатов анализа заказчику.

Преаналитический этап

Данная фаза лабораторных исследований может быть полностью автоматизирована при условии, что средственно при централизованной лаборатории. В случае поступления образцов в первичных пробирках без штрих-кода с данными о пациенте и об анализах, которые необходимо провести (эти данные предоставляются отдельно на бумажных носителях), в составе лаборатории предусматривается регистратура для ввода этих данных в ЛИС и для этикетирования первичных пробирок штрих-кодом. Установленные в специальные штативы первичные пробирки со штрих-кодом направляются в приемный буфер-накопитель

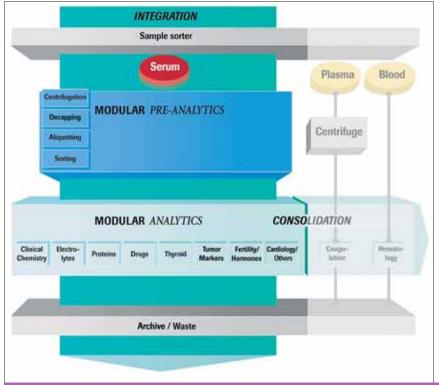
Полная автоматизация всего цикла лабораторного исследования позволит избавиться от ручного труда и связанных с человеческим фактором рисков

штрих-кодирование первичных пробирок с образцами будет производиться в манипуляционных на этапе забора проб. Эта процедура также реализуема в манипуляционной непо-

автоматизированной поточной многокомпонентной линии, общий вид которой представлен на рисунках 1 (производство фирмы Roche) и 2 (фирма OrthoClinical Diagnostcs).

производства фирмы OrthoClinical Diagnostics

& рис. 3: Компоненты автоматизированной системы пробоподготовки производства фирмы Roche. 1 - сортер первичных пробирок; 2 - центрифуга; 3 - декаппер; 4 - аликвоттер; 5 - лабеллер; 6 - рекаппер; 7 - сортер вторичных пробирок


Основой такой линии являются входной и выходной буферынакопители, а также система транспортеров, по которым пробирки с образцами перемещаются между модулями системы.

Вдоль транспортеров устанавливаются другие преаналитические модули: роботизированная центрифуга, декаппер (система для снятия крышек с первичных пробирок с образцами), аликвоттер (система для производства вторичных пробирок с пробами), лабеллер (система для этикетирования штрих-кодом на вторичные пробирки), рекаппер (система для установки крышек на вторичные пробирки) и сортер (система для сортировки вторичных пробирок с пробами). Иногда лабеллер, рекаппер и сортер конструкционно входят в состав аликвоттера. Кроме автоматизации рутинной пробоподготовки, преаналитический модуль пробоподготовки позволяет проводить повторные и контрольные тесты в автоматическом режиме.

Далее штативы с отсортированными вторичными пробирками, содержащими аликвоты, направляются непосредственно на аналитический этап. Схема сортировки и прохождения преаналитики приведена на рисунке 4.

Аналитический этап

Подавляющее большинство фирм - производителей автоматических анализаторов выпускают отдельные системы для биохимических и иммунологических методов анализа сыворотки (рис. 7). Так, Roche

& рис. 4: Схема преаналитического этапа для образцов с различными типами лабораторных исследований

Diagnostics предлагает несколько специализированных аналитических модулей для клинической химии и иммуноферментных методов, различающихся производительностью (от 170 до 2400 параметров в час), а также количеством тестов (18-60) и периодом их стабильности «на борту» (до 8 недель). OrthoClinical Diagnostics также производит специализированные анализаторы для биохимии (фотометрический принцип детекции) и иммунологии (технология улучшенной хемилюминесценции. Их особенностью (так же, как и аналогичных анализаторов

фирмы Abbott; рис. 5) является возможность работы с первичными пробирками, что сводит затраты времени на преаналитическую фазу до минимума. Изюминкой автоматических биохимических и иммунологических анализаторов компании Olympus (рис. 8), а также биохимических анализаторов Thermo Fischer Scientific (ранее KONELAB; рис. 6), была «открытость» этих систем (возможность использования реагентов других производителей), однако теперь Olympus начал выпуск закрытых систем. Кроме того, существует возможность подключения к лабора-

& рис. 5: Высокопроизводительные автоматические биохимические и иммунологические анализаторы производства фирмы Abbot

& рис. 6: Общий вид системы Prime WORKCELL производства фирмы Thermo Fischer Scienific

торным автоматизированным системам (ЛАС) модулей для определения параметров систем свертывания и фибринолиза в плазме, а также гематологических показателей цельной крови.

К сожалению, ЛАС всех вышеупомянутых компаний имеют лишь ограниченную совместимость с модулями других производителей. Однако существуют фирмы, специализирующиеся на интеграции отдельных автоматизированных анализаторов разных производителей в единую ЛАС по индивидуальному проекту, такие как PVT Ltd, A&T Corp., LABOTIX Automation Inc. и др.

 рис. 7: Высокопроизводительные автоматические биохимические и иммунологические анализаторы производства фирмы Roche

Основной объем рутинных анализов в практике клинических лабораторий приходится на биохимию и иммунологию, поэтому данные методы автоматизируют чаще всего и прежде всего. Остальные исследования зачастую предлагают подключать к автоматизированной линии на следующих этапах модернизации лаборатории.

Постаналитический этап

Автоматизация постаналитической фазы обычно является завершающим этапом создания полностью автоматизированной системы лабораторных исследований. Эта фаза обычно предусматривает регистрацию результатов анализов во внутрилабораторной (иногда – и в межлабораторной) базе данных, выдачу этих результатов на бумаге или отправку их заказчикам в электронном виде, а также может включать системы сортировки и архивации (хранения) первичных и/или вторичных пробирок с образцами.

Естественно, существует ряд специфических требований к классу помещения, где устанавливается подобная система, к уровню водоподготовки (если необходимо водоснабжение) и др. Соблюдение всех этих условий является обязательным для обеспечения качества лабораторных исследований.

Не менее важными для обеспечения качества являются до- и послеаналитический этапы лабораторных исследований. Доаналитический этап начинается с назначения врачом лабораторного анализа, включает взятие материала, его транспортировку и заканчивается, когда проба поступает в лабораторию на рабочее место. Актуальной задачей является строгое соблюдение всех стандартов, установленных для данного этапа, в том числе клиническое обоснование назначаемых исследований, правильность забора биологических образцов в одноразовые контейнеры, соблюдение температурного, вибрационного и временного режимов их транспортировки в КДЛ. Послеаналитический этап включает формулиро-

 Высокопроизводительные автоматические биохимические и иммунологические анализаторы производства фирмы Olympus

вание лабораторного заключения, доставку результатов анализа до клинициста и интерпретацию лабораторных данных с учетом клинического состояния пациента. Строгое выполнение всех требований на каждом из этих этапов невозможно без создания целостной системы забора и транспортировки образцов в КДЛ и передачи данных проведенного исследования потребителям. Она должна состоять из пунктов забора образцов при медицинских учреждениях (не обязательно организационно принадлежащих КДЛ), в идеале имеющих штрихкод-принтер для первичных пробирок и включенных в общую информационную сеть вместе с ЛИС, что позволит оперативно получать результаты исследований, а также из системы транспортировки образцов, обеспечивающей оптимальную логистику (минимальные сроки и др.) их доставки в лабораторию.

Резюме

Последовательная централизация и автоматизация клиникодиагностических исследований имеет ряд неоспоримых преимуществ. Прежде всего, это позволит обеспечить систему аналитического качества на всех этапах клинического исследования, высокую производительность и широкий диапазон проводимых исследований за счет использования в таких централизованных КДЛ современного высокотехнологичного оборудования и качественных реактивов. Полная автоматизация всего цикла лабораторного исследования позволит избавиться от ручного труда и связанных с человеческим фактором рисков. Использование оборудования более высокого класса точности также увеличит степень достоверности получаемых результатов.

Реализация системы обеспечения аналитического качества подразумевает регулярное участие централизованной КДЛ в схеме внешнего контроля качества, организованной на добровольной основе компетентными негосударственными организациями и включающей межлабораторные сравнения и использование контрольных образцов международно признанных производителей. Кроме того, такой подход дает возможность повысить эффективность труда высококвалифицированных кадров (и сократить потребность в них) в КДЛ, использования помещений (за счет высвобождения части площадей, занимаемых малыми лабораториями) и в конечном итоге поднять экономическую эффективность функционирования лабораторной службы в целом. Все это позволит существенно улучшить показатели качества, доступности и своевременности клинической диагностики.